Бекларян Левон Андреевич — различия между версиями

Материал из Энциклопедия фонда «Хайазг»
Перейти к: навигация, поиск
(Публикации в базе данных Math-Net.Ru)
 
(не показано 11 промежуточных версий 4 участников)
Строка 1: Строка 1:
 
{{Персона  
 
{{Персона  
| name-ru-main  = Бекларян Лева Андреевич
+
| name-ru-main  = Бекларян Левон Андреевич
 
| name-ru-01    =  
 
| name-ru-01    =  
 
| name-ru-02    =  
 
| name-ru-02    =  
Строка 6: Строка 6:
 
| name-lat =  
 
| name-lat =  
 
| name-en      =  
 
| name-en      =  
| name-am      =  
+
| name-am      = Բեկլարյան Լեւոն Անդրեյի
 
| name-fr      =  
 
| name-fr      =  
 
| состояние текста    = 7
 
| состояние текста    = 7
Строка 16: Строка 16:
 
| портрет              =  
 
| портрет              =  
 
| дата рождения        = 06.06.1951   
 
| дата рождения        = 06.06.1951   
| место рождения      = Ленинаван Нагорного Карабаха
+
| место рождения      = Ленинакан, Арцах
 
| дата смерти          =  
 
| дата смерти          =  
 
| место смерти        =  
 
| место смерти        =  
 
| место деятельности  =  
 
| место деятельности  =  
| краткая информация = Доктор физико-математических наук. Специалист по дискретной математике и математической кибернетике
+
| краткая информация = Доктор физико-математических наук, профессор, главный научный сотрудник ЦЭМИ. Специалист по дискретной математике и математической кибернетике
| тэг01 = профессор
+
| тэг01 = Доктор физико-математических наук
| тэг02 = доктор физико-математических наук
+
| тэг02 = профессор
 
| тэг03 =  
 
| тэг03 =  
 
| тэг04 =  
 
| тэг04 =  
 
| тэг05 =  
 
| тэг05 =  
}}
+
}}{{Медали}}
  
 
=Биография=
 
=Биография=
Родился 6 июня 1951 года в пос. Ленинаван Нагорного Карабаха  
+
Родился 6 июня 1951 года в пос. Ленинаван Нагорного Карабаха/
  
Окончил механико-математический факультет Московского Государственного Университета им. М.В.Ломоносова в 1974 году.  
+
Окончил школу с золотой медалью. Окончил механико-математический факультет Московского Государственного Университета им. М.В.Ломоносова в 1974 году.  
  
 
С 1992 года по настоящее время является главным научным сотрудником Центрального Экономико-Математического Института РАН.  
 
С 1992 года по настоящее время является главным научным сотрудником Центрального Экономико-Математического Института РАН.  
Строка 41: Строка 41:
 
*функционально-дифференциальные уравнения и их приложения в экономике  
 
*функционально-дифференциальные уравнения и их приложения в экономике  
  
Количество выпущенных дипломников : более 40 выпущенных дипломников, 8 выпущенных аспирантов.  
+
Количество выпущенных дипломников: более 40 выпущенных дипломников, 8 выпущенных аспирантов.  
  
 
==Области исследований и основные научные результаты==  
 
==Области исследований и основные научные результаты==  
Строка 65: Строка 65:
 
*Уравнения опережающе-запаздывающего типа и решения типа бегущей волны для бесконечномерных динамических систем. Л. А. Бекларян. СМФН, 2003, 18–29  
 
*Уравнения опережающе-запаздывающего типа и решения типа бегущей волны для бесконечномерных динамических систем. Л. А. Бекларян. СМФН, 2003, 18–29  
 
*Об аналогах альтернативы Титса для групп гомеоморфизмов окружности и прямой. Л. А. Бекларян. Матем. заметки, 2002, 334–347  
 
*Об аналогах альтернативы Титса для групп гомеоморфизмов окружности и прямой. Л. А. Бекларян. Матем. заметки, 2002, 334–347  
*О критерии топологической сопряженности квазисимметрической группы группе аффинных преобразований $\mathbb R$
+
*О критерии топологической сопряженности квазисимметрической группы группе аффинных преобразований $\mathbb R$ Л. А. Бекларян. Матем. сб., 2000, 31–42  
Л. А. Бекларян. Матем. сб., 2000, 31–42  
+
*Групповые особенности дифференциальных уравнений с отклоняющимся аргументом и связанные с ними метрические инварианты Л. А. Бекларян. Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., 1999, 161–182  
*Групповые особенности дифференциальных уравнений с отклоняющимся аргументом и связанные с ними метрические инварианты
 
Л. А. Бекларян. Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., 1999, 161–182  
 
 
*К вопросу о классификации групп гомеоморфизмов $\mathbb R$, сохраняющих ориентацию. III. $\omega$-проективно-инвариантные меры. Л. А. Бекларян. Матем. сб., 1999, 43–62  
 
*К вопросу о классификации групп гомеоморфизмов $\mathbb R$, сохраняющих ориентацию. III. $\omega$-проективно-инвариантные меры. Л. А. Бекларян. Матем. сб., 1999, 43–62  
*Групповые особенности дифференциальных уравнений с отклоняющимся аргументом. Введение в линейную теорию. Л. А. Бекларян
+
*Групповые особенности дифференциальных уравнений с отклоняющимся аргументом. Введение в линейную теорию. Л. А. Бекларян Матем. заметки, 1998, 483–493  
Матем. заметки, 1998, 483–493  
+
*Критерий существования проективно-инвариантной меры для групп гомеоморфизмов $\mathbb R$, сохраняющих ориентацию, связанный о структурой множества неподвижных точек. Л. А. Бекларян. УМН, 1996, 179–180  
*Критерий существования проективно-инвариантной меры для групп гомеоморфизмов $\mathbb R$, сохраняющих ориентацию, связанный со структурой множества неподвижных точек. Л. А. Бекларян. УМН, 1996, 179–180  
+
*К вопросу о классификации групп гомеоморфизмов $\mathbb R$, сохраняющих ориентацию. II. Проективно-инвариантные меры Л. А. Бекларян. Матем. сб., 1996, 3–28  
*К вопросу о классификации групп гомеоморфизмов $\mathbb R$, сохраняющих ориентацию. II. Проективно-инвариантные меры
+
*К вопросу о классификации групп гомеоморфизмов $\mathbb R$, сохраняющих ориентацию. I. Инвариантные меры. Л. А. Бекларян Матем. сб., 1996, 23–54  
Л. А. Бекларян. Матем. сб., 1996, 3–28  
 
*К вопросу о классификации групп гомеоморфизмов $\mathbb R$, сохраняющих ориентацию. I. Инвариантные меры. Л. А. Бекларян
 
Матем. сб., 1996, 23–54  
 
 
*К теории линейных дифференциальных уравнений с отклоняющимся аргументом. Л. А. Бекларян. УМН, 1994, 193–194  
 
*К теории линейных дифференциальных уравнений с отклоняющимся аргументом. Л. А. Бекларян. УМН, 1994, 193–194  
*О приводимости дифференциального уравнения с отклоняющимся аргументом к уравнению с постоянными соизмеримыми отклонениями
+
*О приводимости дифференциального уравнения с отклоняющимся аргументом к уравнению с постоянными соизмеримыми отклонениями. Л. А. Бекларян. Матем. заметки, 1988, 561–566
Л. А. Бекларян. Матем. заметки, 1988, 561–566  
 
  
 
==Достижения==
 
==Достижения==
Строка 87: Строка 81:
 
=Библиография=
 
=Библиография=
 
*[http://www.mathnet.ru/php/person.phtml?option_lang=rus&personid=8421 Math-Net.Ru]
 
*[http://www.mathnet.ru/php/person.phtml?option_lang=rus&personid=8421 Math-Net.Ru]
 
+
*[http://www.mai.ru/colleges/fac_8/chairs/people/bekl.htm Факультет "Прикладная математика и физика"]
 
==Контакты==
 
==Контакты==
 
*E-mail: Beklar@cemi.rssi.ru
 
*E-mail: Beklar@cemi.rssi.ru
 +
[[Категория:Доктора физико-математических наук]]
 +
[[Категория:Профессора]]

Текущая версия на 20:18, 18 декабря 2013

Дополните информацию о персоне
Бекларян Левон Андреевич
На армянском: Բեկլարյան Լեւոն Անդրեյի
Дата рождения: 06.06.1951
Место рождения: Ленинакан, Арцах
Краткая информация:
Доктор физико-математических наук, профессор, главный научный сотрудник ЦЭМИ. Специалист по дискретной математике и математической кибернетике

Биография

Родился 6 июня 1951 года в пос. Ленинаван Нагорного Карабаха/

Окончил школу с золотой медалью. Окончил механико-математический факультет Московского Государственного Университета им. М.В.Ломоносова в 1974 году.

С 1992 года по настоящее время является главным научным сотрудником Центрального Экономико-Математического Института РАН.

Доктор физико-математических наук, защитился в Вычислительном Центре АН СССР в 1990 году, профессор с 1996 года.

Читаемые курсы

  • введение в теорию динамических систем с последействием
  • функционально-дифференциальные уравнения и их приложения в экономике

Количество выпущенных дипломников: более 40 выпущенных дипломников, 8 выпущенных аспирантов.

Области исследований и основные научные результаты

  • Оптимальное управление для систем с отклоняющимся аргументом, групповые особенности дифференциальных уравнений с отклоняющимся аргументом, структура групп гомеоморфизмов прямой и окружности.
  • В задаче оптимального управления для систем с отклоняющимся аргументом получен сильный поточечный принцип максимума Понтрягина в виде двухпараметрического семейства конечномерных экстремальных задач. Для специального класса отклонений аргумента доказана эквивалентность сильного поточечного принципа максимума принципу максимума в интегральной форме.
  • Для дифференциальных уравнений с отклоняющимся аргументом, определенных на интервале, полупрямой и прямой, получены: теоремы существования и единственности решения для задачи Коши; теоремы о гладкости решения; оценки размерности пространства решений; теоремы о типичности свойства невырожденности пространства решений.
  • Для групп гомеоморфизмов прямой и окружности исследованы метрические инварианты в виде инвариантной меры, проективно-инвариантной меры и, более общего метрического инварианта, -проективно-инвариантной меры.

Основные научные публикации

  • Бекларян Л.А. Задача оптимального управления для систем с отклоняющимся аргументом и ее связь с конечно-порожденной группой гомеоморфизмов R, порожденной функциями отклонения// ДАН СССР. 1991. Т. 317, N6, С. 1289-1294.
  • Бекларян Л.А. Об одном методе регуляризации краевых задач для дифференциальных уравнений с отклоняющимся аргументом// ДАН СССР. 1991. Т. 317, N5, С. 1033-1038.
  • Бекларян Л.А. К вопросу о классификации групп гомеоморфизмов R, сохраняющих ориентацию. I. Инвариантные меры.// Математический сборник. 1996. Т.187, N3. с.23-54.
  • Бекларян Л.А. К вопросу о классификации групп гомеоморфизмов R, сохраняющих ориентацию. II.Проективно-инвариантные меры.//Математический сборник. 1996. Т.187, N4. с.3-28.
  • Бекларян Л.А. Критерий существования проективно-инвариантной меры для групп гомеоморфизмов R, сохраняющих ориентацию, связанный со структурой множества неподвижных точек.//Математические заметки. 1996. Т.51, N3. с.179-180.
  • Бекларян Л.А. Групповые особенности дифференциальных уравнений с отклоняющимся аргументом и связанные с ними метрические инварианты// ВИНИТИ. 1999. Т.67, стр.161-182..
  • Бекларян Л.А. К вопросу о классификации групп гомеоморфизмов R, сохраняющих ориентацию. III. -проективно-инвариантные меры.//Математический сборник. 1999. Т.190, N4. с.43-62.
  • Бекларян Л.А. О критерии топологической сопряженности квазисимметрической группы группе аффинных преобразований R.// Математический сборник. 2000. (принята к печати). том 191, N6, с.31-42.

Публикации в базе данных Math-Net.Ru

  • О структуре группы, квазисимметрически сопряженной группе аффинных преобразований прямой. Л. А. Бекларян. Матем. сб., 2005, 3–20
  • Введение в теорию функционально-дифференциальных уравнений и их приложений. Групповой подход. Л. А. Бекларян. СМФН, 2004, 3–147
  • Группы гомеоморфизмов прямой и окружности. Топологические характеристики и метрические инварианты. Л. А. Бекларян. УМН, 2004, 3–68
  • Уравнения опережающе-запаздывающего типа и решения типа бегущей волны для бесконечномерных динамических систем. Л. А. Бекларян. СМФН, 2003, 18–29
  • Об аналогах альтернативы Титса для групп гомеоморфизмов окружности и прямой. Л. А. Бекларян. Матем. заметки, 2002, 334–347
  • О критерии топологической сопряженности квазисимметрической группы группе аффинных преобразований $\mathbb R$ Л. А. Бекларян. Матем. сб., 2000, 31–42
  • Групповые особенности дифференциальных уравнений с отклоняющимся аргументом и связанные с ними метрические инварианты Л. А. Бекларян. Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., 1999, 161–182
  • К вопросу о классификации групп гомеоморфизмов $\mathbb R$, сохраняющих ориентацию. III. $\omega$-проективно-инвариантные меры. Л. А. Бекларян. Матем. сб., 1999, 43–62
  • Групповые особенности дифференциальных уравнений с отклоняющимся аргументом. Введение в линейную теорию. Л. А. Бекларян Матем. заметки, 1998, 483–493
  • Критерий существования проективно-инвариантной меры для групп гомеоморфизмов $\mathbb R$, сохраняющих ориентацию, связанный о структурой множества неподвижных точек. Л. А. Бекларян. УМН, 1996, 179–180
  • К вопросу о классификации групп гомеоморфизмов $\mathbb R$, сохраняющих ориентацию. II. Проективно-инвариантные меры Л. А. Бекларян. Матем. сб., 1996, 3–28
  • К вопросу о классификации групп гомеоморфизмов $\mathbb R$, сохраняющих ориентацию. I. Инвариантные меры. Л. А. Бекларян Матем. сб., 1996, 23–54
  • К теории линейных дифференциальных уравнений с отклоняющимся аргументом. Л. А. Бекларян. УМН, 1994, 193–194
  • О приводимости дифференциального уравнения с отклоняющимся аргументом к уравнению с постоянными соизмеримыми отклонениями. Л. А. Бекларян. Матем. заметки, 1988, 561–566

Достижения

  • доктор физико-математических наук (1990)
  • профессор (1996)

Библиография

Контакты

  • E-mail: Beklar@cemi.rssi.ru