Аскарьян Гурген Ашотович

Материал из Энциклопедия фонда «Хайазг»
Перейти к: навигация, поиск
Дополните информацию о персоне
Аскарьян Гурген Ашотович
GURGEN A. ASKARYAN
56 1.png
Другие имена: Аскарян Гурген Ашотович
На английском: GURGEN A. ASKARYAN
Дата рождения: 14.12.1928
Место рождения: Москва, Россия
Дата смерти: 02.03.1997
Место смерти: Москва, Россия
Краткая информация:
Физик-теоретик

Биография

Гурген Аскарьян родился 14 декабря 1928 г. в семье московских врачей.

Он проучился музыке (скрипка)в общей сложности 15 лет - сначала в музыкальной школе, а потом в техникуме. Но незадолго до окончания средней школы попав на концерт Иегуди Менухина, понял, что никогда не сможет приблизиться к уровню великого музыканта, и забросил музыкальную карьеру.

Окончил школу с золотой медалью, и подал документы на физический факультет Московского университета отделение строения вещества, которым заведовал академик Д.В. Скобельцын.

Будучи студентом третьего курса, Аскарьян высказал очень важную идею, обещавшую новые возможности регистрации заряженных частиц. Аскарьян провел несложные предварительные расчеты и пришел к выводу, что такое устройство вполне осуществимо. Но он не получил должной поддержки, и его замысел так и не был претворен в жизнь. [1]

Этот случай, с одной стороны, вызвал у Гургена понятное чувство досады. С другой стороны, он уверовал в свои силы. Дипломную работу Аскарьян выполнял на кафедре будущего нобелевского лауреата И.М. Франка. Гурген предложил новый способ регистрации заряженных частиц, дающий возможность не только фиксировать прохождение заряженной частицы, но и получить изображение ее трека в измерительном устройстве. В него входила прозрачная люминесцирующая среда, в которой проходящая частица оставляет за собой светящийся след. Предложение было высоко оценено специалистами, но попыток к его реализации Аскарьян не делал. Тем не менее идея дипломной работы вместе с несостоявшимся проектом пузырьковой камеры в какой-то мере определила уже тогда репутацию Аскарьяна как незаурядного физика.

В октябре 1952 г. Гурген был зачислен в аспирантуру Института химической физики Академии наук. Придя в ФИАН, Гурген попал в лабораторию, возглавляемую членом-корреспондентом АН В.И. Векслером, где проектировались и строились ускорители заряженных частиц. Это было новое и быстро развивавшееся направление. Деятельность лаборатории находилась под строгим секретом. Даже название ей придумали - Эталонная лаборатория, чтобы никто не догадался, чем там занимаются. Векслер искал новые, более эффективные способы ускорения заряженных частиц. Он выискивал и рассматривал такие физические явления, в которых возникают сильные электрические поля, с тем чтобы эти поля использовать для ускорения.

Аскарьян заинтересовался комплексом проблем, который был связан с поисками Векслера. Начались оживленные обсуждения, количественные оценки, выбор наиболее обещающих вариантов. Несколько раз в неделю Векслер приходил к Аскарьяну, и они с увлечением обсуждали различные новые возможности в проблеме ускорения заряженных частиц.

Аскарьян предложил и рассмотрел возможные применения быстрых электронных и плазменных сгустков. Одно из них представляло интерес для широко проводимых в то время исследований по физике управляемых термоядерных реакций. Дело в том, что предложенные Аскарьяном методы локализации позволяли проводить интенсивный нагрев сгустков, сохраняя их в удерживаемом состоянии. Использование эффективных методов локализации облегчало предварительный нагрев электронной плазмы.

Второе предложенное Аскарьяном применение быстрых локализованных плазменных сгустков заключалось в их использовании для генерации мощного коротковолнового электромагнитного излучения. Аскарьян рассмотрел несколько вариантов такой генерации. Один из них состоял в том, что на пути ускоренного сгустка помещалась мишень. Попадая на мишень, сгусток давал импульс переходного излучения. Это было, по-видимому, первое предложение об использовании переходного излучения для генерации миллиметровых электромагнитных волн.

Среди задач, рассмотренных в то время Аскарьяном, была - рассчитать излучение, возникающее при подлете заряженной частицы к идеально проводящему шару. Работу свою, опубликованную в "Журнале экспериментальной и теоретической физики" (ЖЭТФ), он назвал: "Об излучении ускоренно движущегося электрического изображения равномерно движущегося заряда". Этот красивый подход позднее использовали другие авторы для решения близких задач, скажем задачи об излучении заряженной частицы, пролетающей над гофрированной металлической поверхностью.

В 1957 г. Гурген опубликовал работу, посвященную взаимодействию быстрых частиц с веществом. Она содержала рассмотрение нового эффекта и основанного на этом эффекте нового способа регистрации быстрых заряженных частиц.

Исследования Аскарьяна, связанные с возбуждением звуковых волн в конденсированной среде (в стабильной конденсированной среде - не перегретой, не переохлажденной, далекой от всех возможных фазовых переходов), получили важные применения в физике высоких энергий.

Спустя 20 лет Аскарьян и Б.А. Долгошеин в совместной статье предложили регистрировать нейтрино высоких энергий в толще океанской воды с помощью приемников звука - гидрофонов. Акустическая регистрация удобна тем, что датчик регистрирует звук, порожденный в довольно большом объеме окружающего пространства.

В основу своей кандидатской диссертации, которую он успешно защитил в 1961 г., Аскарьян положил исследования по ускорению плазменных сгустков и по использованию ускоренных сгустков. В год защиты кандидатской Аскарьян выполнил одно исследование, которое в диссертацию не вошло. Оно было опубликовано в "ЖЭТФ" и привело к возникновению нового направления в физике космических лучей. Статья называлась "Избыточный отрицательный заряд электронно-фотонного ливня и когерентное радиоизлучение от него". Эта работа дала начало целому ряду экспериментальных исследований по регистрации электронно-фотонных ливней и определению некоторых их параметров по радиоизлучению.

Аскарьян заинтересовался лазерной физикой и ее проблемами примерно в то же время, когда появилась сама эта лазерная физика. Довольно быстро он стал одним из мировых авторитетов в области взаимодействия лазерного излучения с веществом.

В декабре 1961 г., через несколько месяцев после защиты кандидатской диссертации, он послал в печать работу по этой проблеме, посвященную воздействию лазерного излучения на среду. Подводя итог, он писал: "Интересно отметить, что ионизующее, тепловое и разделяющее воздействие луча интенсивной радиации на среду может быть настолько сильным, что создастся перепад свойств среды в луче и вне луча, что вызовет волноводное распространение луча и устранит геометрическую и дифракционную расходимости - это интересное явление можно назвать самофокусировкой электромагнитного луча". Слово "самофокусировка" закрепилось за тем явлением, которое предсказал Аскарьян. [2]

В течение двух лет после появления статья Гургена с предсказанием эффекта самофокусировки не привлекала большого внимания. Затем, однако, положение резко изменилось. В 1964 г. в журнале "Physical Review Letters" была опубликована работа одного из создателей квантового генератора Ч.Х. Таунса с сотрудниками, в которой также рассмотрен эффект самофокусировки. К тому времени, когда Аскарьян подал заявку на открытие, явлением самофокусировки заинтересовались многие физики.

В 1971 г. Аскарьян получил диплом на открытие эффекта самофокусировки.

В 1982 г. несколько лабораторий выделились из ФИАНа и образовали Институт общей физики Академии наук (ИОФАН). Директором его стал академик Прохоров. В числе лабораторий, составивших ИОФАН, оказалась и лаборатория физики плазмы, в которой работал Аскарьян.

Гургена Аскарьян многие годы интересовали проблемы экологии или, вопросы геогигиены. Какую-то роль в том, что Гурген не терял к ним интереса, играл семинар П.Л. Капицы, где время от времени они обсуждались.

В 1973 г. Аскарьян с сотрудниками (Е.К. Карловой, Р.П. Петровым, В.Б. Студеновым) изучали действие мощного лазерного луча на поверхность воды, покрытую тонкой пленкой загрязнений (керосина, нефти, масла). Исследовалась возможность уничтожать (выжигать, испарять или разбрызгивать) загрязнения с помощью мощного инфракрасного излучения.

В дальнейшем Аскарьян и Карлова исследовали также возможности применения лазеров для очистки твердых покрытий (автодорожных и аэродромных) от пятен масла, топлива и воды. Это могло бы повысить безопасность движения.

В 1988 г. Аскарьян заинтересовался тем, как влияет на состояние атмосферы и ее озонного слоя разряд, возбуждаемый мощными пучками сверхвысокочастотных радиоволн (СВЧ-разряд). Он провел теоретическое рассмотрение проблемы, а затем и экспериментальные исследования в содружестве с Г.М. Батановым, И.А. Коссым, А.Ю. Костинским и др.

Электромагнитное излучение в некоторых областях спектра оказывает на живые клетки и ткани организма лечебное воздействие. Например, облучение инфракрасным светом усиливает в них восстановительные и иммунные процессы. Ультрафиолетовые лучи обладают сильным бактерицидным действием. Но они, как и инфракрасные лучи, воздействуют только на покровы организма и не проникают в глубину. Аскарьян стал искать способы, позволяющие увеличить глубину проникновения инфракрасного (и ультрафиолетового) излучения в живую ткань. Уже первые эксперименты, проведенные в конце 1981 - начале 1982 г., дали обещающие результаты и вызвали резонанс во всем мире.

Аскарьян показал, что при надавливании на живую ткань глубина проникновения инфракрасного излучения возрастает с нескольких миллиметров до нескольких сантиметров. Это означало, что во много раз расширялась зона лечебного воздействия. Он предложил также способ, который позволяет подвести инфракрасное излучение к той точке в организме, где требуется облучение, не трогая окружающих тканей.

Аскарьян защитил докторскую диссертацию только в 1992 г. Он был физик с мировым именем, число его опубликованных работ приближалось к двумстам, и эти работы содержали много общепризнанных достижений. Ему было бы очень легко стать доктором наук, пожелай он этого. Но он не хотел тратить времени на подготовку и защиту диссертации. Но Аскарьян не хотел. Тогда Рухадзе и Ирисова обратились в Высшую аттестационную комиссию с просьбой разрешить Аскарьяну подать на защиту не диссертацию, а доклад о проведенной научной работе. Разрешение было получено, но Гурген не очень-то был расположен писать даже доклад, составлявший примерно одну десятую часть от объема диссертации.

Сочинения

Написал более 200 научных работ.

  • Аскарьян Г.А. О разложении Гинзбурга // Природа. 1996. № 9. С.89-91

Достижения

  • доктор физико-математических наук (1992)
  • Лауреат Ленинской премии (1988)
  • Лауреат Государственной премии Украинской ССР

Изображения

Разное

  • Эффект Аскарьяна — когерентное радиоволновое черенковское излучение, вызываемое прохождением частиц с околосветовыми скоростями сквозь вещество. Данное явление было предсказано в работе советского физика-теоретика Гургена Ашатовича Аскарьяна. На основании этого эффекта было предложено использовать Луну как детектор нейтрино.
  • Урна с прахом Гургена Ашотовича и его сестры захоронены на Новодевичьем кладбище (Москва).

Библиография

Сноски

  1. Гургену еще не хватало жизненного опыта, он не опубликовал своего предложения и ограничился тем, что обсудил его с несколькими физиками. Но прошло совсем немного времени, и устройство, которое он предлагал, было реально создано американским физиком Дональдом Артуром Глезером, который независимо пришел к такой же идее и осуществил ее в 1952 г. Пузырьковая камера существенно расширила возможности наблюдения в физике элементарных частиц. За ее создание Глезер получил Нобелевскую премию 1960 года. Другой нобелиант Чарльз Таунс, переоткрыл эффект самофокусировки света в нелинейной среде, показатель преломления которой зависит от интенсивности поля, ранее предсказанный Аскаряном. Когда Таунс узнал о приоритете советского физика, то даже написал извинительное письмо. Именно за это открытие Г.Аскарян получил в I988 г. Ленинскую премию.
  2. В настоящее время открытие Аскарьяна, которое положило начало большому числу исследований в этой новой области нелинейной оптики, включено в учебники по оптике, нелинейной электродинамике, акустике и вообще по нелинейной волновой физике.